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ANALYSIS OF FLUID FLOW IN CONSTRICTED TUBES AND 
DUCTS USING BODY-FITTED NON-STAGGERED GRIDS 

M. C. MELAAEN 
Division of Theromodynamics and Thermal Energy. Norwegian Institute of Technology, N-7034 Trondheim. Norway 

SUMMARY 
A finite volume method for the calculation of laminar and turbulent fluid flows inside constricted tubes and 
ducts is described. The selected finite volume method is based on curvilinear non-orthogonal co-ordinates 
(body-fitted co-ordinates) and a non-staggered grid arrangement. The grids are either generated by 
transfinite interpolation or an elliptic grid generator. The method is employed for calculation of laminar 
flows through a tube, a converging-diverging duct and different constricted tubes by both a two- and 
a three-dimensional computer program. In addition, turbulent flow through an axisymmetric constricted 
tube is calculated. Both the power law scheme and the second-order upwind scheme are used. The calculated 
results are compared with the experimental data and with other numerical solutions. 
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INTRODUCTION 

Laminar and turbulent flows inside constricted tubes and ducts are encountered in many 
engineering situations. The constrictions have often complex geometry, and it is not possible to 
describe them directly by regular grids (e.g. Cartesian or cylindrical) when using a finite volume 
method. Even if the blocking-off technique' can be used together with regular girds, it is more 
accurate to use curvilinear non-orthogonal co-ordinates (body-fitted co-ordinates) when describ- 
ing complex geometries. An alternative to curvilinear non-orthogonal co-ordinates is curvilinear 
orthogonal co-ordinates. However, the orthogonal co-ordinates have grid lines which are normal 
to each other, and then the flexibility in the grid line distribution is much less than if curvilinear 
non-orthogonal grids are used. In addition, there exist constrictions where it is not possible to 
generate an orthogonal grid. When using curvilinear non-orthogonal co-ordinates, it is possible 
to use either staggered or non-staggered grid arrangements. From earlier comparisons of these 
grid arrangements for two-dimensional the non-staggered grid arrangement is selected 
since it is the simplest, uses the least memory and computational time, and the accuracy and the 
convergence rate are good. In this non-staggered method, the Cartesian velocity components are 
selected as dependent variables in the momentum equations. The Rhie and Chow interpolation 
method is used for predicting the convective velocities on the cell faces, and this interpolation 
method is used together with the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 
a l g ~ r i t h m . ~ - ~  The results of the numerical calculations depend strongly on the differencing 
scheme selected for the convective terms. In the present paper, the power law scheme' and the 
second-order upwind scheme6 are selected. At high Reynolds numbers the power law scheme is 
first-order accurate, while the second-order upwind scheme is second-order accurate. The grids 
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are generated by both transfinite interpolation and an elliptic grid generator.* First, the different 
parts of the grid are generated by transfinite interpolation. Then, the elliptic grid generator is used 
on the parts of the grid which need remeshing or smoothing. 

The objective of this study is to describe an efficient method for calculation of laminar and 
turbulent incompressible fluid flows inside constricted tubes and ducts. In an attempt to validate 
the numerical model, the calculated results are compared with the experimental data and with 
other numerical solutions. The calculations show the desirable properties of curvilinear non- 
orthogonal co-ordinates when modelling flows inside complex geometries. The flow situations 
analysed are laminar flow in a tube, laminar flow in a converging-diverging duct, and laminar 
and turbulent flows in different constricted tubes. These flows are studied by both a two- and 
a three-dimensional computer program. 

First, the mathematical model is given. Co-ordinate transformations and discretization are 
shown before describing the non-staggered calculation method and the solution algorithm. The 
selected grid generation methods are presented prior to the calculations, discussion and con- 
clusions. 

MATHEMATICAL MODEL 

The continuity and momentum equations for steady laminar flow expressed in Cartesian tensor 
notation are 

a 
- ( p u J = O  
axi 

and 

When calculating turbulent flows, the k--E turbulence model with wall functions is selected.2 The 
momentum equation then has some more terms. 

CO-ORDINATE TRANSFORMATIONS 

In Figure 1, a general control volume given by curvilinear non-orthogonal co-ordinates, 
(ti)=(<, q, [), is shown. Between the curvilinear and Cartesian co-ordinates there exists a one- 
to-one mapping. The transformation from Cartesian to curvilinear non-orthogonal co-ordinates 
is simplified by tensor calculus; some definitions and relations follow. 

Two distinct frames of basis vectors exist at any point in a curvilinear non-orthogonal 
co-ordinate system. One frame follows the co-ordinate lines, while in the other frame, the basis 
vectors are normal to the co-ordinate surface' 

These two vectors are called covariant and contravariant basis vectors, respectively, and are 
parallel if and only if the co-ordinate transformation is orthogonal. 

The chain rule is used when transforming the integrated conservation equations from 
Cartesian to curvilinear co-ordinates, viz., 

(4) 
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Next, the face area of a control volume generated by two of the three vectors e,l,, e(2) and e(3) is 
given by 

A(k) = Af ij = e,J, x e(,), ( 5 )  

where k, I and rn are cyclic. The Jacobian determinant of the co-ordinate transformation is defined 
by 

J=det  J~=e, , ,*(e ,2 ,  x e(3)). (6)  

= A:/J. (7) 

By combination of equations (5 ) ,  (6) and e(i)-e(j) =a:, 8 is obtained: 

If the control volume has the dimensions (St, 6q, SC) in the computational space, the correspond- 
ing area and volume in physical space are 

gA'k) = A(k) S t '  6yrn 6 V =  J 6< 6q SC, (8) 

respectively, where k, I and m are cyclic. The choice of the values of 64' is free, the value selected 
here being unity. 

DISCRETIZATION 

The continuity and momentum equations can be treated partly as scalar equations and, therefore, 
it is desirable first to discretize a general scalar equation in which cp is the scalar dependent 
variable. A general co-ordinate-invariant, strong-conservation form of the governing equation is 

V * J = S ,  (9) 

(10) 

where 

J = PUP - TVq. 

Here cp, r and S are redefined for the different conservation equations that are solved. 
Since the finite volume concept is employed, the co-ordinate invariant equation is integrated 

over a general control volume, 6 V, around grid point P in physical space (Figure 1) and then the 
divergence theorem is used: 

J . A ( l )  Ie -J-A( l )  ( ,+J*A(2)  (n-J .A(2)Js+J.A(3)  ( , -J .A(J )  1 b- - S  P3 (1 1) 
where the subscripts e, w, n, s, t and b indicate the different faces of the control volume. 

The co-ordinate transformations produce 

and 

and the linearized source term can be written as 
,l 

Sp= J S dV=sIp+S2,  cpp. 
dV 

When the co-ordinate system is orthogonal, Gi j  is zero for i # j .  Then the total flux through 
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Figure 1 .  Curvilinear non-staggered grid arrangement 

a given face is divided into orthogonal and non-orthogonal parts, &, and jh0, viz., 

ifn =(J^bInn +(J^ho)nn, (15) 

where 

The orthogonal flux (J^b),, is discretized in the same manner as on regular grids (e.g. Cartesian), 
for instance by the power law scheme (POW) or the second-order upwind scheme (SOU). 
Following the methodology of Patankar,' the orthogonal flux for the power law scheme can be 
written as 

( -hc=A(Pb)N ((Pp-(Pd+F,1 (PP, (17) 

( J ^ &  = A (- P;) a (cpw - (PP) + F; (PP, 

A(P')  = 1[0, (1 -0.1 IP'1)5] I + 1 [O, - P i ]  1 

(18) 

(19) 

where 

and 

Here I [ 3 1 means the largest of the expressions contained within it. 

given by a linear extrapolation from the two upstream neighbouring nodes: 
When the second-order upwind scheme6 is selected, the convected variable on the cell face is 
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where the physical weighting interpolation factor is 

Pe 
- 

f l P = E ,  

and point EE is east of point E. 
For the diffusive terms in the orthogonal flux (when using the second-order upwind scheme) 

and the non-orthogonal diffusive terms, a linear variation of the dependent variables, together 
with central differencing, is used. If the non-orthogonal terms are discretized implicitly, both 
positive and negative coefficients appear. However, when an iterative method is used for the 
solution of the discretized equations, it is preferable to work with positive coefficients, since 
negative coefficients may produce numerical instability and unrealistic solutions. To achieve this, 
the non-orthogonal flux (&,),, is lumped into the source term, and then the non-orthogonal part 
of the equations is treated explicitly. Here gZp has to be selected negative to ensure a numerically 
stable solution. The final equations to be solved have the form 

where nb indicates summation over neighbouring gird points and 

where 

and the coefficients in the <-direction for the power law scheme are 

aE=D;A(P;), aw=DiA(-PA), (26) 

while the coefficients in the <-direction for the second-order upwind scheme are 

with similar a n b  coefficients in q- and [-direction. 
From Taylor series analysis, the second-order upwind scheme is second-order accurate where- 

as the power law scheme is first-order accurate at high Reynolds numbers; hence, the power law 
scheme produces most false diffusion when the grid lines and streamlines do not follow each 
other. Unfortunately, the second-order scheme does not generally produce a bounded solution. 
This occurs because the coefficients of the most distant nodes EE, WW, NN, S S ,  TT and BB can 
be negative. Since an iterative method may produce numerical divergence for negative coeffic- 
ients, the negative coefficients of the most distant nodes are incorporated into the source and 
treated explicitly to deduce a more robust algorithm. In the source term, this addition arises for 
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the second-order upwind scheme: 

A ~ = ~ E E ( ( P E E - ~ D P ) + ~ w w  (VWW -(PP)+UNN((PNN-(PP) 

+ ~ S S ( ~ P ~ ~ - ( P P ) + ~ T T ( ( P T T - ~ D P ) + ~ B B ( ( P B B - ( P P ) .  (3 1) 
This requires nb in equation (23) to equal E, W, N, S, T and B. Then, all coefficients in SOU are 
positive during the iterations. This has been found to improve the stability and the convergence 
rate. 

Since the main part of the laminar momentum equations based on Cartesian velocity compon- 
ents can be treated similar to the general scalar equation (cp=uk), it is only the pressure term 
which, in addition, needs integration: 

Although the above integration is based on a three-dimensional flow, only small changes are 
needed for axisymmetric flow; the radius appears in the conservation equations, and a simple 
additional term appears in the radial momentum equation. The strategy followed above is also 
followed for turbulent flow. The additional terms in the momentum equations are integrated over 
the control volume, and the same is done for the source terms in the scalar k- and &-equations. In 
addition, the wall functions need special treatment since curvilinear non-orthogonal co-ordinates 
are used. 

NON-STAGGERED CALCULATION 

For the non-staggered grid arrangement, the Cartesian velocity components are stored in scalar 
grid points (Figure 1) and then velocity interpolation is needed when the convective flux at the 
control volume faces must be estimated. The straightforward linear interpolation between two 
velocity components leads to chequerboard oscillations in pressure and velocity.' The reason is 
the 26ti-differences of velocity and pressure gradients, which is insensitive to 1st '-variations; the 
even and odd grid points are decoupled. If a non-staggered calculation is to be sdccessful, a close 
coupling between pressure and convective velocity is required. This is achieved by the Rhie and 
Chow interpolation method?. 

where 

The overbar means weighted linear interpolation from neighbouring grid points. To find a solu- 
tion independent of under-relaxation, the under-relaxation factor is not included in ap. 

SOLUTION ALGORITHM 

The coupling between the pressure and velocity fields is handled by using the SIMPLE algo- 
rithm.' A pressure-correction equation with the same form as equation (23) can be deduced. This 
pressure-correction equation contains non-orthogonal terms. Since the pressure correction goes 
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to zero for a converged solution, it is possible to neglect the non-orthogonal terms, and then only 
a seven-point computational molecule, with only positive coefficients, appears when solving the 
pressure-correction equation. The solution algorithm is then: solve the momentum equations, 
find the tentative C i  from the Rhie and Chow interpolation formula, solve the pressure-correction 
equation, correct the pressure, mass flow rate and Cartesian velocity components, and solve 
scalar equations if necessary. The equations are solved by line-by-line TDMA together with block 
correction.2 The process is repeated until convergence is obtained. The solution algorithm is 
incorporated into a two- and three-dimensional computer program system. 

GRID GENERATION 

Transjinite interpolation 

The transfinite interpolation method is an algebraic grid generator. Different transfinite 
interpolation methods exist, but here a method discussed by Thompson et aL8 has been adopted 

This equation distributes grid points inside the domain, if the grid points on the boundary are 
known. The blending functions in equation (35) are any functions which satisfy the conditions 

such as the linear functions 

n = l , 2 ,  l = l , 2 ,  

m =  1,2, 

5 
41 (;) = 1 - 7 ,  

4* (;) = ; . 

I =  1,2, (37) 

(39) 

Equation (35) can be used on a general curved surface in three-dimensional space, because it 
gives the component equations for x, y and z. These values appear directly after specifying 5 and q; 
hence, the method is non-iterative with a low computational time. The equation can be used in 
a two-dimensional plane by setting one Cartesian co-ordinate constant, or in three dimensions by 
generating subsequent curved sufaces. 

Elliptic grid generator 

Since the transfinite interpolation method used in this study does not produce a smooth grid, it 
is often desirable and even necessary to smooth the algebraic grid by an elliptic grid generator. To 
generate an elliptic grid, a system of differential equations has to be solved:8 

VZ('=P' ,  i =  1, 2, 3. (40) 
Lines of constant 5' are used to describe the grid lines. Then it is much more convenient to 

transform equation (40) in such a way that the dependent and independent variables are 
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interchanged. The final equations can be solved numerically for the Cartesian co-ordinates xi on 
an equally spaced grid in the computational domain. A simple way to transform equation (40) is 
by writing 

(41) V 2 r = 0  

This equation is rewritten using equation (4), 

and equation (40). The result is 

where g i j  = e(i). e(J). Both the first and the second derivatives are found by central differencing. 
The spacing of the grid lines, smoothness and non-orthogonality can be affected by adjusting 

the values of the source terms Pi = ( P ,  Q, R )  in equation (42). Different possible sources exist. For 
instance, series of exponential functions as the source terms are often used;*v9 they are also used in 
the present work. These functions are: 

where 

The value of the coefficients aln and cI ,  are used to decide whether the planes 5, q and/or 
[=constant are attracted to a specified plane, co-ordinate line or grid point. The strength of the 
attraction is controlled by the decay factor, bin. If (-planes are attracted, the all have to be 
different from zero. Correspondingly, the a12 and al ,  are different from zero when the q- and 
i-plane are attracted. 

The point successive over-relaxation (SOR) method is used for solving the equations describing 
the grid. After the grid is generated, all geometric information necessary in the discretized 
conservation equations is calculated from equations (9, (6) and (8). 

RESULTS AND DISCUSSION 

Laminar f low in a converging-diverging duct 

Maliska and Raithby" have predicted laminar flow through a convergingciiverging duct 
(Figure 2). They used a parabolic program based on non-orthogonal co-ordinates. A rectangular 
inlet section with an aspect ratio of 3 changes gradually into a circular outlet. This duct exhibits 
strong convergence in the vertical direction, and mild divergence in the horizontal direction. The 
strong convergence in the vertical direction creates a secondary flow in the same direction, and 
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t 1.25L 

Figure 2. One quarter of the converging-diverging duct 

with the same order of magnitude as the principal flow in the x-direction. Due to symmetry, only 
one quarter of the channel has to be calculated. Then two of the boundaries are symmetry planes. 

Since the cross-section of the duct changes from a rectangle to a circle, neither Cartesian nor 
cylindrical co-ordinates are usable. Curvilinear non-orthogonal co-ordinates are needed. It seems 
natural to start with Cartesian co-ordinates at the inlet, and then gradually deform that grid until 
the circle at the outlet is described. The grid at the circular outlet is then strongly non-orthogonal. 

However, before the duct is calculated, the effect of such a highly distorted grid is analysed. This 
is done by calculating one quarter of a fully developed tube flow by the three-dimensional 
program. Normal to the flow direction, the elliptic generated grid shown in Figure 3(a) is used. 

- numerical 
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0v b 0.0 0.2 0.4 0.6 0.0 f . 0  

(a) (b)  
Figure 3. (a) Grid normal to the tube flow, 17 x 17. (b) Isolines of the fully developed axial velocity, u/2u. The isolines are 

uniformly distributed from 0 to 1 
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Three control volumes are selected in the flow direction. The velocity profile at the inlet is given 
by the outlet velocity. At  convergence, the fully developed tube flow appears. For fully developed 
laminar tube flow an analytical solution for the velocity and the friction coefficient, Cf, exist: 

u = ~ U  1 -  - , C f R e = 1 6 ,  -[ C O Y 1  

where 

(47) 

and U is the mean tube velocity and T ,  the wall shear stress. 
In Figure 3(b), the calculated u-velocity is compared with the exact solution. The agreement is 

good, also near the highly deformed grid corner. In Table I, the calculated friction coefficients are 
given. The calculated and analytical solutions are in close agreement. The table also lists the 
friction coefficient calculated by the two-dimensional program. Seventeen grid points were 
uniformly distributed in the radial direction. It is seen that the three-dimensional program gives 
a better solution than the two-dimensional program. This is due to the grid point distribution in 
the radial direction. The grid points on the boundary of the three-dimensional grid (Figure 3(a)) 
are uniformly distributed. However, in the inside domain, the grid points are closer to the wall 
than in the two-dimensional grid, and even if the grid is highly distorted, this three-dimensional 
calculation resolves the steep gradients better. 

From this initial calculation it is seen that even though the grid is highly distorted, the results 
are good; hence, similar grids can be used to calculate the converging-diverging duct and also 
analogous problems. 

Maliska and Raithby" describe the contours of the duct cross-sections by 

where a and b are the half-duct dimensions in the y-  and z-direction, respectively (Figure 2). If 
m+co, a rectangular duct is obtained, while m = 2  and a = b  give a circular duct. In the 
x-direction, an equal spacing of eight control volumes has been used. Table I1 gives the staggered 
positions and the constants describing the geometry." The hydraulic diameter at the inlet, Dh, is 
equal to 3L. 

A grid point density of 10 x 17 x 17, equal to the one used by Maliska and Raithby" is selected. 
Each grid in the plane normal to the x-axis is generated by the elliptic grid generator, where the 
source terms Q and R are used (Figure 4). 

The continuity and momentum equations are non-dimensionalized with the length scale D, 
(X=x/D,) and by the average inlet velocity 0 ( U = u / d ) .  The flow studied has a Reynolds 
number, UDh/v, of 1000. A predicted fully developed velocity profile for a rectangular duct is 
prescribed as the inflow boundary condition. Usual symmetry and wall boundary conditions are 

Table I. Analytical and predicted friction coefficients 

Analytical Two-dimensional Three-dimensional 

Cr Re 16 15.9292 15.9584 
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Table 11. Constants defining the boundary shape 
of the converging-diverging duct 

Plane N bia 

3.000 
2.696 
2.41 1 
2.142 
1,888 
1.648 
1.42 1 
1.205 
1 .ooo 

m 

50 
18.58 
9.1 15 
5.951 
4.317 
3.428 
2.794 
2.340 
2.0 

0 .o 0 :2 0 .o 0 :2 0 .o 0 ;2 

plane 3 plane 6 plane 9 

Figure 4. Grid used to calculate the converging-diverging duct 

incorporated. A linear extrapolation estimates the velocity components at the outlet, but in 
addition the u-component is forced to satisfy global continuity. 

The pressure averaged over the plane normal to the x-axis is shown in Figure 5. The SOU 
produces results in better accordance with the calculation of Maliska and Raithby" than the 
POW. Even if Maliska and Raithby" use a parabolic program, the agreement is quite good, 
except for the outlet. The deviation probably occurs because the present elliptic program requires 
an outlet boundary condition, whereas the parabolic program does not. In addition, if the present 
grid is finer by the wall, the steep gradients are better resolved and the pressure drop increases. 
Figure 6 shows the isobars in the planes Y=O and Z=O. 
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Figure 5. Average pressure drop, (pin-p)/pU2 

The U-velocity profiles in the planes Y=O and Z=O are shown in Figures 7 and 8. The 
deviation between POW and SOU is small. The strong contraction of the duct in the 2-direction 
produces a strong acceleration of the flow core, which causes the U-velocity profiles to be flatter 
in the Y=O plane. In the Z=O plane, it is seen that the slight expansion results in an inflection in 
the profiles. The inflection point appears because the flow has to fill the space created by the 
divergence of the duct. Due to the strong vertical contraction, significant secondary flow is 
induced (Figure 9). This cross flow has a stagnation point in the Z =O plane because of the duct 
divergence in the Y-direction. The same fundamental flow profiles were reported by Maliska and 
Raithby." 

for all equations, the solution is said 
to have converged. The necessary number of iterations for POW is 39 and for SOU 43. When the 
block-correction method is omitted and only TDMA used, POW needed 133% more iterations; 
this indicates the power of the block-correction method. 

If the normalized norm of the residuals are less than 

Laminar flow through constricted tubes 

Young and Tsai' studied the flow in non-axisymmetric constrictions experimentally (Fig- 
ure 10). Three-dimensional complex flows appear through these constrictions, which were formed 
by inserting a cylindrical section through the wall of the tube. The radius of the constriction, R,, 
and the height, 6, may be varied to give different flow situations. In Table 111, the geometrical 
characteristics corresponding to models M4 and M5 of Young and Tsai are shown. Young and 
Tsai" have measured the critical Reynolds number which gives transition from laminar to 
turbulent flow. In the present work, Reynolds numbers well within the laminar region were 
selected. 
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PRESSURE 
a - -2. f38699 
b - - 1 ,785367 
c - - 1.432035 
d- - 1 ,078703 
e - -0.72537 1 
f - -0.372038 
9- -0.018706 
h- 0.334626 

Figure 6. Isobars, p / p u 2 ,  calculated by SOU 

The continuity and momentum equations are made non-dimensional by 
and the velocity scale 2 0 .  At the inlet, a fully developed laminar flow is 

the length scale Ro 
prescribed. Due to 

symmetry, only half the flow is calculated. Usual wall boundary conditions are selected and zero 
gradients are assumed at the outlet. The calculations start at the non-dimensional position 
X =  -6  and end at position 20. The grid is expanded in both directions away from the 
constriction (Figure 11). In the YZ-plane, the grid is generated by solving a system of Poisson 
equations. The presented results are calculated on a 72 x 18 x 30 grid. This final grid shows that 
curvilinear non-orthogonal co-ordinates can accurately model the present complex geometry. 
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Figure 7. U-velocity profiles in the symmetry plane Y=O 
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X=8/6 
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U-velocity 
Figure 8. U-velocity profiles in the symmetry plane Z = O  

First the flow in model M4 is studied. For Re= 200 and 650, 123 and 172 iterations are needed 
for POW, while SOU uses about 40% more iterations and computational time for Re= 200. In 
Table IV, the calculated separation and reattachment lengths in the symmetry plane are given. 
The present results are compared with the measurements' and the numerical results obtained by 
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plane X=O 

plane X=-3.1 

plane X=-6 

Figure 11. Fundamental grid for model M4 

Table IV. Separation and reattachment lengths, model M4 

XSIXO XJXO 

Reynolds number 200 300 650 200 300 650 

Experiment, Young 0.77 0.68 0.57 1.40 1.45 2.57 
Rastogi, POW 0.72 0.67 0.5 1 1.41 1.62 2.05 

Present, POW 0.78 0.72 0.56 1.49 1.65 1.95 
Present, SOU 0.80 0.77 0.70 1.59 1.81 2.2 1 

Rastogi.” The measured data have scatter due to the dye-tracing technique used. Rastogi 
employed a staggered method based on non-orthogonal co-ordinates and POW, and 
a 100 x 20 x 40 grid was selected. The separation points obtained by the present non-staggered 
method are always best predicted by POW. The reattachment points at Re=200 and 300 are also 
best predicted by POW, whereas at Re = 650, SOU is closer to the measured reattachment point. 
The results obtained by Rastogi and the present results from calculation based on POW are in 
good agreement. SOU gives a too late separation and also a too late reattachment for all but 
Re = 650. 
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Figure 12. Pressure along the constricted wall in the symmetry plane. model M4, Re=200 

Measurements indicate that, as the Reynolds number increases, the separation point tends to 
the point of minimum cross section and the reattachment point tends to move downstream. Both 
POW and SOU predict the same trend. Due to the three-dimensional flow, the separation 
appears along a line on the constriction. Near the tube wall, separation starts earlier than in the 
symmetry plane. SOU produces a greater deviation between these two points than POW. As the 
Reynolds number increases, the recirculation zone grows up the tube wall. At Re= 650, POW 
predicts a recirculation zone covering the whole tube circumference, while SOU also nearly gives 
a recirculation zone around it. However, these zones are thin and the grid is too coarse to describe 
these zones accurately. In addition to the recirculation after the constriction, a small recirculation 
bubble appears at the beginning of the constriction for Re=300 and 650. 

In Figures 12 and 13, the pressure in the symmetry plane along the wall of the constriction is 
shown for Re = 200 and 650. In front of the constriction, the pressure first increases due to 
stagnation of the flow. Minimum pressure occurs downstream of the throat of the constriction. 
The dimensionless pressure drop decreases with increasing Reynolds number. As expected, POW 
and SOU show best agreement at the lowest Reynolds numbers. POW produces a faster pressure 
recovery than SOU at Re = 650. 

Velocities and isobars in the symmetry plane calculated for the flow with Re= 650 are shown in 
Figure 14. The results are achieved primarily by SOU, but, as a comparison, the results obtained 
by POW are given for the U -  and W-velocity profiles. Figure 14(b) gives the Lr-velocity isolines. 
This figure also shows the separation and reattachment points. In Figure 15, the crdss flow 
velocity vectors at different X-positions are given. 

Flow through model M5 is calculated at Re=50.  No separation appears in front of the 
constriction. The recirculation zone downstream of the constriction covers the whole tube wall 
circumference. In Table V, the separation and reattachment lengths on the step side A and on the 
opposite side B are given. Separation starts along a line on the constriction. The values in Table V 
are valid for the symmetry plane. Compared to measurements, POW and SOU give separation 
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Figure 13. Pressure along the constricted wall in the symmetry plane, model M4, Re=650 

Figure 14. Flow in the symmetry plane at Re= 650, model M4: (a) velocity vectors; (b) U-velocity isolines; (c) U-velocity 
profiles (The length of the lines for the U-velocity is equal to 2, and this gives the scale for the profiles.); (d) W-velocity 

profiles; (e) isobars. The profiles are in positions X = -6, -4, -2, 0, 2, 4, 7, 10, 13, 16, 18 
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plane X=2.4 

plane X=7.5 

I . . . , . , . # *  

plane X=3.3 

plane X=lS.O 

plane X=4.2 

Figure 15.  Cross flow velocity vectors calculated by SOU, model M4, Re=650 

Table V. Separation and reattachment lengths on sides A and B, model 
M5, Re= 50 

Side A Side B 

Experiment Young 0.67 2.60 - 2.10 
Present, POW 0.76 2.16 1.99 2.3 1 
Present, SOU 0-77 2.30 1.98 2.67 
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on side A too far downstream. The reattachment point is best predicted by SOU. On side B, POW 
and SOU generate separation at the same point. This point was not measured. Both POW and 
SOU predict a reattachment point too far downstream on side B, but SOU deviates most from 
the experimental data. While measurements indicate that reattachment appears earlier on side 
B than on side A, POW and SOU give the opposite result. 

In Figure 16, the pressure drop along the wall with the constriction is shown. As a comparison, 
the pressure drop in an axisymmetric constriction called model M2 is also shown.' Both the 
axisymmetric model M2 and model M5 have an area reduction of 89%. As shown in Figure 16, 
the non-axisymmetric model M5 produces higher pressure drop than the axisymmetric model 
M2; in addition, the non-axisymmetric model M5 gives less pressure recovery. POW predicts 
a higher pressure drop than SOU. In both models the minimum pressure appears downstream of 
the minimum flow area. These trends were also pointed out by Young. 

The velocities and pressures in the symmetry plane calculated by SOU are shown in Figure 17. 
The isobars indicate little variation of the pressure normal to the X-axis. Due to the low Reynolds 
number, the flow reaches quickly the fully developed laminar flow profile. 

Re=50, model M2 and M5 

--- POW, model M2 
--SOU, model M5 

,__._...____._............. - ......... - ......__.__...._._...__.._____. 

Turbulent f low through an axisymmetric constricted tube 

Turbulent flow through an axisymmetric constricted tube (Figure 18) has been studied 
experimentally by Deshpande and Giddens.' The general shape of the axisymmetric constriction 
is specified as the cosine curve. 
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- 30 

-35 

- 40 
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Ro 2Ro 

Re=50, model M2 and M5 

--- POW, model M2 
--SOU, model M5 

,__._...____._............. - ......... - ......__.__...._._...__.._____. 

where the characteristics of the geometry are given in Table VI. A flow with Reynolds number 
(U2R0/v) equal to 15000 is calculated. The computational domain is extended from x-position 
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l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l  
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I 3  
CJ 
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- 50 

?! 
3 
u) 
u) 

a c 

l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l  

Fig ure 16. Pressure along the constricted wall for model M5 and axisyrnmetric model M2, Re=50 
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Figure 17. Flow in the symmetry plane at Re=50.  model M5: (a) velocity vectors: (b) U-velocity isolines: (c) U-velocity 
profiles; (d) W-velocity profiles: (e) isobars. The profiles are at positions X = -6, -4, -2, 0, 2, 4, 7, 10, 13, 16 

reattachment 

. -  . - . _  

Figure 18. Geometric configuration for the axisymmetric constriction 

Table VI. Model geometry 

Percentage 
reduction 

x o / R o  in flow area 

2 
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-4Ro to 14Ro. Because of our earlier experience with calculations of laminar flow through 
constricted tubes, a 52 x 22 grid is selected. An initial calculation of the turbulent flow with 
a 42 x 12 grid indicates little change in the recirculation zone compared to the result from the 
52 x 22 grid. Hence, further grid refinement seems unnecessary. The present grid is generated by 
transfinite interpolation (Figure 19). At the inlet, the grid point closest to the wall is outside the 
viscous sublayer. 

At the inflow, x =  -4Ro, the experimental data given by Deshpande and GiddensI3 are 
prescribed. They state that the u-velocity profile is in reasonable agreement with the fully 
developed power law profile (nz6.4) for Re= 15 OOO. Hence, the velocity at the inflow is given 
byI4 

where uo is the centreline velocity. 
From the measurements of Deshpande and Giddens' only the velocity fluctuations ukms and 

wkmS are given. When turbulent kinetic energy, k,  at the inlet is estimated, it is assumed that uims is 
equal to wims. The dissipation rate of turbulent kinetic energy, E, is estimated from15 

where C,=OO9 and the length scale is given by 

I=min(0.42 ywa,,, 0.13 Ro). (53) 

At the outflow boundary, the streamwise gradients are assumed zero. 
In Table VII, the present calculated separation and reattachment lengths together with the 

measurements and the earlier calculations of Rastogi16 and Kadja' are given. Whereas Rastogi 

Figure 19. Grid for turbulent flow through an axisymmetric constriction 

Table VII. Separation and reattachment lengths 

Separation, x J R ,  Reattachment, x, /R,  

Experiment, Deshpande z 0.4-0.5 
Rastogi, 41 x 21, hybrid 
Kadja, 44 x 32, POW 
Kadja, 44 x 32, QUICK 

1.2 
0.8 
0.8 

4.0 
2.4 
3.2 
3.5 

Present, 52 x 22, POW 0.89 3.02 
Present, 52 x 22, SOU 0.56 4.01 
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and Kadja used curvilinear orthogonal co-ordinates and a staggered grid arrangement, the 
present method is based on curvilinear non-orthogonal co-ordinates and a non-staggered grid 
arrangement. All calculations were based on the k--E turbulence model together with wall 
functions. 

The separation point was not measured, but the experimental velocity profiles indicate 
a separation point earlier than that predicted by SOU. SOU means that the momentum 
equations are solved by SOU while POW is used for solving the k- and &-equations, since POW 
cannot produce negative k and E values. Even if the calculations with POW and the hybrid 
scheme are expected to give approximately the same result (Table VII), considerable disagree- 
ment exists between the results of Rastogi and Kadja. The present result using POW produces 

POW sou $ / *o  

___. 0.20 
___.  0.40 
_ _ _ .  0.60 
_ _ _ .  0.80 
--_. f.00 
_ _ _ .  f.03 

Figure 20. Streamlines 
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Figure 21. Centreline velocity 
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Figure 22. Axial velocity profiles at different x/R,-positions 
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a smaller recirculation zone than that predicted by Kadja, but the agreement is satisfactory. 
When Kadja uses QUICK (Quadratic Upstream Interpolation for Convective Kinematics) instead 
of POW, a minor increase in the reattachment length appears. However, as the streamlines in 
Figure 20 indicate, the present calculation with SOU produces a much longer and thicker 
recirculation zone than POW. From Table VII it is evident that SOU gives a recirculation zone in 
close agreement with the measurements. Since SOU produces a more accurate recirculation zone 
than POW, the centreline velocity (Figure 21) and the u-velocity profiles at  different x-positions 
(Figure 22) are also in closer agreement with the measurements. 

The fluid is strongly accelerated in the converging part of the constriction, and afterwards 
deceleration takes place in the diverging part. Because of the severe adverse pressure gradients as 
the flow area increases, the flow separates from the curved wall. Both u-velocities (Figures 21 and 
22) and the wall static pressures (Figure 23) are well predicted within the acceleration region. 
However, POW gives separation too late with a too early and excessive pressure recovery and 
a too early drop in the centreline velocity. Even if SOU gives a much better result, it is evident that 
the centreline velocity is not high enough in the recirculation region, and the velocity recovery 
occurs too late. Velocity profiles (Figure 22) indicate that the measured recirculation bubble is 
thicker than the one calculated by SOU. In Figure 22, the deviation between the calculated and 
the measured velocity profiles is greatest along the centreline. Since the flow is axisymmetric, 
small u-profile variations at the outer radial positions affecting mass flow continuity are supple- 
mented by large adjustments near the axis. 

In Figure 24, the predicted centreline turbulent kinetic energy is compared with measurements. 
The measured k is estimated from velocity fluctuations in the same way as at the inlet. Whereas 
the measured k increases considerably after separation occurs, the prediction indicates that 
k increases in two steps: first, in front of the constriction and, next, after the recirculation zone. 
Profile plots of k at different x-positions are shown in Figure 25. Downstream of the minimum 
area of the throat, SOU and POW predict different k-profiles. 

-4 -3 -2  - 1  0 1 2 3 4 5 6 7 8 9 10 1 1  12 13 14 

x/R, 

Figure 23. Wall static pressure 
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Figure 24. Turbulent kinetic energy profiles along the tube centreline 
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Figure 25. Turbulent kinetic energy profiles at different x-positions: x / R , =  -4, - 1, 0, 1, 2, 4, 6, 11 

The present results indicate that SOU produces the best predictions of the flow. However, the 
agreement between the predicted and the measured turbulent kinetic energy is not satisfactory. 
But, if the present k-profiles are compared with the results by Kadja, the qualitative agreement 
seems good. In addition to the k-E turbulence model, Kadja also tested an algebraic stress model. 
The change in the predicted turbulent kinetic energy along the centre line was small compared to 
the large deviation between prediction and measurement. Laminarization in the strongly acceler- 
ating wall-boundary layer, connected with an incomplete description of the near-wall dissipation 
during the deceleration process, were initially thought to be the main sources for the unsuccessful 
prediction. However, Kadja also calculated the flow with a low-Reynolds-number k--E model 
without finding any noticeable improvement compared to the earlier calculations with wall 
functions. One of the changes obtained with the low-Reynolds-number k--E model compared to 
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wall functions was the depression of the near-wall peaks of the turbulent kinetic energy in 
Figure 25. The reason for the disagreement is not well understood, but the stress transport in 
axisymmetric flow may be more important than what has been assumed until now.I7 

CONCLUSIONS 

Laminar and turbulent two- and three-dimensional fluid flows inside constricted tubes and ducts 
with complex geometries are studied by a finite volume method based on curvilinear non- 
orthogonal co-ordinates (body-fitted co-ordinates) and a non-staggered grid arrangement. These 
complex geometries show the need for the high flexibility of the curvilinear non-orthogonal 
co-ordinates. The use of non-staggered grid arrangement simplifies the computer program system 
compared to a staggered grid arrangement. Later, the computer program system will be extended 
to a multiblock grid system so that the flexibility in describing complex geometries is even 
increased. This extension is simplified by a non-staggered grid arrangement. The turbulent flow is 
described by the high Reynolds number k-E turbulence model together with wall functions. 
Generation of grids is achieved by transfinite interpolation and an elliptic grid generator. 

The three-dimensional calculation of tube flow indicates that the treatment of the non- 
orthogonal terms is correct. When calculating the converging-diverging duct, the second-order 
upwind scheme is in better agreement with an earlier numerical result than the power law scheme. 
For the laminar flow through the non-axisymmetric constricted tubes, the second-order upwind 
scheme does not produce results that are in better accord with the experimental data than the 
power law scheme. However, this complex three-dimensional flow situation needs further grid 
refinement. 

When turbulent flow through an axisymmetric constriction is calculated, the second-order 
upwind scheme produces results in better agreement with measurements than the power law 
scheme. Although the velocity and pressure are in satisfactory agreement with the measured 
values, the turbulent kinetic energy along the centreline is not in satisfactory accordance with the 
experimental data. 

Curvilinear non-orthogonal co-ordinates together with a non-staggered grid arrangement are 
very useful in the analysis of flow inside complex geometries. The present results are believed to be 
within the accuracy of the turbulence model employed, and both the calculations of laminar and 
turbulent flows are in accordance with the earlier numerical results. The convergence properties 
of the algorithm are good. 
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APPENDIX: NOMENCLATURE 

A'" area vector 
A j Cartesian area component 
unb, up 
b 
e(i,, e'') 
' k  Cartesian unit vectors 
J 

coefficients in the discretized equation 
source term in the discretized equation 
covariant and contravariant basis vectors 

convective and diffusive flux vector 
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Jacobian determinant 
Cartesian component of e(i, ( = dxj/d<’) 
Cartesian component of e‘” (= d(’/axj) 
turbulent kinetic energy 
general indicator for the control volume faces; e, w, n, s, t, b 
physical length between points P and e 
pressure 
Cartesian position vector 
source term 
velocity vector 
non-dimensional velocities 
Cartesian velocity components; u, u, w 
volume 
non-dimensional Cartesian co-ordinates 
Cartesian co-ordinates; x, y, z 
distance from the wall 

Greek characters 

P 
cp * 

general diffusivity coefficient 
difference 
Kronecker delta 
dissipation rate of turbulent kinetic energy 
dynamic viscosity 
curvilinear non-orthogonal co-ordinates; 5’ = <, t2 = q, t3 = [ 
density 
general dependent variable 
stream function; cl /o is the maximum stream function difference at the inlet 
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